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Introduction
Cardiovascular disease often manifests early as metabolic 
syndrome, autonomic dysregulation and hypertension [1]. Easy 
identification of individuals in this high-risk class, in the absence 
of any disease, could promote early identification and thus reduce 
the prevalence of adolescents with metabolic syndrome who are 
likely to become overweight/obese adults with hypertension and 
heart failure. Heart Rate Variability (HRV), a measurement of the 
autonomic modulation of heart rates, is a widely used screening tool 
for heart disease [2]. HRV indicators of autonomic dysregulation 
have been reported in children affected by obesity [3]. In previous 
studies from our laboratory, Fast Fourier Transform (FFT) measures 
of HRV showed that after periods of overnight fasting, higher 
Body Mass Index (BMI) was associated with greater sympathetic 
modulation in African-American adolescents [4]. However, in the 
same population, a 900 Cal test beverage challenge produced an 
adequate stimulus to decrease sympathetic modulation but failed 
to differentiate between individuals with higher BMI compared to 
those with normal-to-lower BMI [5]. These findings demonstrate 
the dependency of HRV on physiological state, as has been 
reported previously for HRV measurements during sleep versus 
wakefulness [6] and the need to perform metabolic provocation 
testing for 3 hours to create an adequate profile of each subject 
to characterize their autonomic responsiveness to energy 
substrate challenges. Nonlinear feedback control appears to be 



a property of normal cardiac rhythmicity [7]. The present study 
tests the hypothesis that healthy adolescents with high BMI are 
differentiable from those with normal-low BMI by the correlation 
between their blood pressures and dynamical systems-related 
scaling exponents that measure HRV. This study represents the 
first step in determining whether HRV could be useful in identifying 
overweight, otherwise healthy youngsters who could be at the 
greatest risk for developing hypertension in the future and bases 
its findings on congruency with previous studies through the use 
of detrended fluctuation analyses in conjunction with k-means 
clustering methods. 

AIM
This   study  was  designed to test the hypothesis that scaling ex-
ponents motivated by nonlinear fractal analyses of Heart Rate Vari-
ability (HRV) differentiate overweight, otherwise healthy adolescent/
young adult subjects at risk for developing prehypertension, the pri-
mary forerunner of cardiovascular disease.

MATERIALS AND METHODS 	
This cluster analysis study was performed during calendar years 
2012-2013. The experiments and data collection were approved 
by the Howard University Institutional Review Board, Washington 
DC, U.S.A. Subjects without any diagnosed cardiovascular disease 
were recruited for the experiment and each subject provided 
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ABSTRACT
Introduction: Obesity and cardiovascular disease are 
inextricably linked and the health community’s response to the 
current epidemic of adolescent obesity may be improved by 
the ability to target adolescents at highest risk for developing 
cardiovascular disease in the future. Overweight manifests early 
as autonomic dysregulation and current methods do not permit 
differentiation of overweight adolescents or young adults at 
highest risk for developing cardiovascular disease.

Aim: This study was designed to test the hypothesis that 
scaling exponents motivated by nonlinear fractal analyses of 
Heart Rate Variability (HRV) differentiate overweight, otherwise 
healthy adolescent/young adult subjects at risk for developing 
prehypertension, the primary forerunner of cardiovascular 
disease.

Materials and Methods: The subjects were 18-20year 
old males with Body Mass Index (BMI) 20.1-42.5kg/m2. 
Electrocardiographic inter-beat (RR) intervals were measured 
during 3h periods of bed rest after overnight fasting and ingestion 

of 900Cal high-carbohydrate and high-fat test beverages on 
separate days. Detrended Fluctuation Analysis (DFA), k-means 
cluster and ANOVA analyses of scaling coefficients α, α1, and 
α2, showed dependencies on hourly measurements of systolic 
blood pressure and on premeasured BMI.

Results: It was observed that α value increased during the 
caloric challenge, appears to represent metabolically-induced 
changes in HRV across the participants. An ancillary analysis 
was performed to determine the dependency on BMI without 
BMI as a parameter. Cluster analysis of the high-carbohydrate 
test beverage treatment and the high-fat treatment produced 
grouping with very little overlap. ANOVA on both clusters 
demonstrated significance at p<0.001. We were able to 
demonstrate increased sympathetic modulation of our study 
group during ingestion and metabolism of isocaloric high-
carbohydrate and high-fat test beverages.

Conclusion: These findings demonstrate significantly different 
clustering of α, α1, and α2 and Systolic Blood Pressure (SBP) 
with respect to normal, overweight and obese BMI.
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Parameter Mean

Age (years) 18.61±0.65

Height (inches) 68.64±2.82

Weight (lbs.) 186.97±54.28

Body mass index (kg/m-2) 27.82± 7.48

Systolic blood pressure (mmHg) 129.16±11.83

Diastolic blood pressure (mmHg) 71.92 ± 7.22

[Table/Fig-1]: Characteristics of the study group.

informed consent. The characteristics of the study population, 
which consisted of 13 healthy 18–20-year-old African-American 
male university students, are presented in [Table/Fig-1]. The study 
participants were admitted to the General Clinical Research Center 
(GCRC) at the Howard University Hospital. All subjects were non-
smokers and consumed less than two standard alcohol drinks a 
day, without recreational drug dependencies and not currently on 
any prescriptive medication that could interfere with the autonomic 
nervous system modulation.

range correlation in non-stationary time series [8]. Because certain 
disease states alter the inherent scale invariant property of the RR 
intervals, the application of DFA to successive RR intervals leads 
to the detection of pathological states [8]. The DFA algorithm is 
integrated over the RR interval time series [9]. The integrated time 
series is then divided into boxes of equal length, n. In each box of 
length n, a least-squares line is fit to the data. This line represents 
the trend in that box. This process is repeated over different box 
sizes and provides a relationship between F (n), the average 
fluctuation as a function of box size and the box size, n. If scaling 
is present in the biological signals, F (n) will increase with box size 
n such that F(n) αnα. This linear relationship is then plotted on a 
double log graph whose slope yields the fractal coefficient, α. 

The exponent is viewed as describing the landscape of a time 
series as in the degree of “roughness”; the larger the value of α, 
the smoother the time series and the smaller the, α rougher the 
time series. This is the distinction between extreme correlation 
and complete randomness. In terms of a healthy heart, α=1 
can be seen as a middle ground between the two extremes. 
For healthy individuals on a time scale of 102~104 heart beats, 
α = 1.00 ± 0.11[8]. 

In this study, Peng’s application of DFA to distinguish between 
unhealthy and healthy RR interval time series was used to develop 
our application of DFA to study the cardiovascular dynamics of 
healthy individuals under the duress of digesting and metabolizing 
an autonomic nervous system stimulant. In addition to the 
calculation of α, the DFA crossover analysis [7,8] was applied to 
all the data to calculate α1 and α2. The crossover analysis allows 
the ability to uncover pathological differences in time frames. This 
method was previously used to make a distinction between healthy 
and unhealthy patients. Typically, in healthy patients, α1 is expected 
to be greater than α2 because its value is greatly influenced by 
respiratory sinus arrhythmia [8]. Within the same construct, α2 
is expected to be smaller and is considered to be indicative of 
an individual’s overall health [8]. In the healthy realm, we expect 
α1>α2 [8]. It was discovered that in unhealthy patients, reverse 
cross phenomena is observed where α1<α2. Reverse crossover 
is seen in the presence of pathological conditions, such as in 
patients with congestive heart failure. Within the framework of our 
experiment, we use Peng’s insight to define the parameters α1 and 
α2 to include the effects of our test beverage on our participants. 
Our subjects underwent hyper-caloric dietary stress and we 
observed an increase in sympathetic signaling. This increase 
is akin to an increase in sympathetic modulation that is seen in 
patients with congestive heart failure. Thus, we redefined our short 
time scale features, α1, to be indicative of the subjects when they 
were most influenced by metabolism of the high-carbohydrate or 
high-fat test beverage and α2 as a recovery period during which 
the subjects regained their pre-drink status. Consequently, α1 and 
α2 were calculated for every 1h, 2h and 3h segments. An α1 was 
calculated from the slope of log F(n) versus log(n) when 4≤ n ≤16 
and α2 was obtained from the same plot when 16≤ n≤64. The 
scaling exponents α, α1 and α2, were then used in combination 
with k-means clustering to study the dependency of each of the 
dynamical systems-related fractal exponents on BMI. 

K-means Cluster Method 
K-means clustering is a technique which aims to cluster 
observations into groups in an effort to uncover emergent patterns 
that are not readily observable. K-means is an iterative algorithm 
with two steps which are repeated until a steady state is reached 
[10]. Step 1 assigns each data point to the closest cluster center 
and Step 2 recalculates the new cluster center (geometric centroid 
of data points assigned to the cluster). The algorithm partitions 
the data for N data points into K disjoint subsets {S1, S2, …Sk} 
minimizing the sum of squares criterion as

Each participant underwent high-fat and high-carbohydrate test 
beverage treatments on resting HRV on separate days, after an 
unsupervised self-reported period of overnight fasting. Upon 
entering the GCRC between 8:00 and 9:00 AM, on each of the two 
testing days after the overnight fasting periods and before ingestion 
of the test beverages, body weight and height were measured 
(Detector scale) and these values were used to compute BMI as the 
quotient kg body weight/m2 height. Respiratory Quotient (RQ) was 
then measured by indirect calorimetric method using an isolated 
flow-directed breathing chamber (Deltatrac, Sensor Medics, Yorba 
Linda, CA) to insure study participants successfully fasted overnight 
with a qualifying RQ of 0.7. Systolic and diastolic blood pressures 
were measured by automated sphygmomanometer (Critic are 
Systems Model 506DXNT, Waukesha, WI). Each participant was 
found to have a resting systolic/diastolic blood pressure less than 
140/90 mmHg.

Electrocardiogram (ECG) data was recorded using a BIOPAC 
data acquisition system (BIOPAC Systems Inc., Santa Barbara, 
CA) comprised of a single-channel differential input amplifier and 
signal-conditioning module (ECG100A) with an analog-to-digital 
converter module (MP100). Data was recorded at a sample rate of 
500 Hz. prior to ingestion of the test beverage, 20 min of baseline 
data was recorded. Following this, a high-carbohydrate or high-fat 
treatment of 900 Cal was administered randomly over a period of 
20-30 min, on two separate days. Systolic and Diastolic Arterial 
Blood Pressure (SBP, DBP) measurements were taken at the 
beginning of each subsequent hour. The high-carbohydrate test 
beverage consisted of 900 Cal of pure fruit juice containing 30 mg 
Na and the high-fat test beverage consisted of 900 Cal of half-
and-half dairy mixture made of 67% fat, 23% carbohydrate, 10% 
protein, and contained 320 mg Na. Ingestion of the test beverage 
was followed by 3h of continuous monitoring. In order to discern 
the changes in the dynamical systems-related measurements 
of HRV as the test beverages were digested and metabolized, 
each 3-h file was separated into three 1h files, one 1h file starting 
after the first 30 min post ingestion, and two 2-h files with overlap 
using BIOPAC. This resulted in one 20min pre-ingestion ECG 
RR interval file and six metabolism-induced RR interval files per 
individual for each test beverage. To process the ECG files, each 
file was processed by the (Nevrokard) HRV analysis program to be 
converted into RR intervals. All artifacts were removed based on 
established heart rate patterns from the RR interval file. 

Detrended Fluctuation Analysis Method 
The Detrended Fluctuation Analysis (DFA) is a modification of a 
root mean square analysis. Developed to study the fluctuations in 
physiological data sets, DFA has the advantage of detecting long-



www.jcdr.net	 Lauren Taffe et al., Cluster Analysis for Differentiation of Obesity-related Cardiovascular Risk

Journal of Clinical and Diagnostic Research. 2016 Aug, Vol-10(8): CC01-CC06 33

n=26 α α1 α2

1st 1-h 0.92 ± 0.11 0.75 ± 0.15 0.87 ± 0.11

2nd 1-h 0.98± 0.09 0.84 ± 0.18 0.94 ± 0.11

3rd 1-h 1.03± 0.08 0.91 ± 0.19 0.99 ± 0.10

1st 2-h 0.99± 0.07 0.79 ± 0.14 0.92± 0.08

2nd 2-h 1.03 ± 0.06 0.87 ± 0.17 0.97 ± 0.08

3-h 0.92± 0.12 0.81 ± 0.12 0.89± 0.16

1st 1-h (excluding first 
30 min)

1.01±0.08 0.81 ±0.17 0.96 ± 0.11

[Table/Fig-2]: Values for the fractal coefficients α, α1, α2.

Variable Control BMI<29, 
n=9

BMI 30-39, n=2  BMI>40, n=2 

BMI (kg/m-2) 23.76 ± 3.20 34.39 ± 4.95 41.77 ±  1.02 

SBP (mmHg) 122.45 ± 10.02 128.71 ± 11.31* 136.1 ± 11.44* 

DBP (mmHg) 70.17 ± 8.70 67.62 ± 7.77 67.4 ± 7.65 

[Table/Fig-6]: Relationship between body mass index and blood pressure for all 
time intervals and test beverage treatments. BMI=body mass index; SBP=systolic 
blood pressure; DBP=diastolic blood pressure, *significantly different than controls 
at p<0.01.

J = kj = 1Σhεsj|xn - µj| where xn is the vector representing the nth 
data point and μj is the geometric centroid of the jth cluster using 
data points in Sj from the previous iteration [10]. The highest 
Dunn’s index determines the correct number of clusters in a data 
set. It is defined as

DIm = min1≤ i ≤ m {min1≤ j ≤ m, j ≠ I (dCi, Cj/ max1≤k≤ m ∆k)} where m is the 
number of clusters and d Ci,Cj is the intercluster distance measured 
by the Euclidean distance between data points from different 
clusters, ∆k is the maximum intracluster distance measured by 
the Euclidean distance between data points within a cluster [11]. 
The ‘max ∆k’ is the largest ’maximum intracluster distance’ of all 
clusters. The parameters are normalized to have a mean of zero 
and a standard deviation of one. 

STATISTICAL ANALYSIS 
The number of optimal clusters using k-means clustering technique 
was determined by computing the highest Dunn’s index [12] using 
the Matlab computer program (Mathworks, Natick, MA). One-way 
analysis of variance (ANOVA) with multiple range testing was used 
to determine the significance of dependencies of α, α1, and α2 on 
BMI and SBP (Microsoft Excel). 

RESULTS 
The key element of this analysis is the computation of the scaling 
coefficients α, α1 and α2 for each 1h, 2h, and 3h segment following 
ingestion and metabolism of high-carbohydrate and high fat test 
beverages. It was observed that α value increased during the 
caloric challenge and appears to represent metabolically-induced 
changes in HRV across the participants in this study. Overall, α 
values showed that the study participants were healthy individuals 
as α@1 as shown in [Table/Fig-2]. 

Reverse crossover was observed as α1 remained less than α2 
until the 3rd 1h segment when crossover occurred and both α1 
and α2 were observed to approach 1 as seen in [Table/Fig-3]. 
Summative, although α was found to be close to 1.0 with respect 
to each time segment, α1 and α2 varied with respect to each time 
segment and approached 1.0 as recovery from metabolism of the 
test beverages was reached. This observation implies that α1 and 
α2 were more sensitive to the autonomic challenges during the 
metabolism of the test beverage. 

To investigate the dependency of α, α1, α2 on various pre-
measured variables such as BMI, a k-means cluster analysis was 
first done using α, α1, α2. and BMI for all both treatments and 
time segments. [Table/Fig-4] summarizes the k-means values for 
α, α1, α2, and BMI for each cluster group. [Table/Fig-5] shows that 
the analysis did yield clear delineation between three groups with 
significantly different BMI values for BMI≤29 kg/m-2 (n=9), BMI 30-
39 kg/m-2 (n=2), and BMI≥40 kg/m-2 (n=2), p<0.001 [Table/Fig-6]. 

An ancillary analysis was performed to determine the dependency 
on BMI without BMI as a parameter. Cluster analysis of the high-
carbohydrate test beverage treatment (10 clusters) shown in [Table/
Fig-7] and [Table/Fig-4] and of the high-fat treatment (8 clusters) 
in [Table/Fig-8] and [Table/Fig-6] produced grouping with very little 
overlap. ANOVA on both clusters demonstrated significance at 

[Table/Fig-3]: Fractal coefficients, application to metabolic challenges. α1 is 
representative of the study intervention and α2 of the overall health of the subject. α1> 
α2 indicates crossover and α1< α2 reverse crossover. The plots are shifted vertically 
for viewing purposes.

Cluster 
Number 

Number 
in Group

α α1 α2 BMI

1 9 0.89 ±0.03 1.03 ±0.06 0.92 ±0.05 26.44 ±2.65

2 7 0.87 ±0.03 0.83 ±0.06 0.75 ±0.05 23.35±3.17

3 12 0.96 ±0.03 0.74 ±0.09 0.99 ±0.07 32.08 ±4.30

4 13 1.02 ±0.06 1.13 ±0.05 1.02 ±0.06 23.42 ±2.48

5 15 1.05 ±0.06 0.96±0.08 1.09±0.07 22.79 ±1.50

6 11 0.97 ±0.05 0.91 ±0.08 0.89 ±0.05 22.64 ±2.55

7 16 0.96 ±0.04 0.64±0.07 0.83±0.05 22.24 ±2.54

8 7 1.16 ±0.03 0.78 ±0.12 1.01 ±0.07 36.18 ±5.63

9 8 0.85 ±0.03 0.89±0.06 0.88±0.04 22.35±1.20

10 9 0.81 ±0.07 0.68 ±0.13 0.83 ±0.04 36.06±4.43

11 11 1.04 ±0.04 0.85±0.07 0.95 ±0.03 28.66 ±3.67

12 17 1.06 ±0.04 0.73 ±0.09 0.94 ±0.06 41.76 ±1.02

13 6 0.81 ±0.03 0.61±0.07 0.74 ±0.07 22.36 ±1.88

[Table/Fig-4]: Average k-means cluster values for fractal coefficients α, α1, α2, and 
body mass index (BMI). 

[Table/Fig-5]: Fractal coefficients α, α1, α2, and body mass index, related k-means 
clusters for all time intervals and test beverage treatments. The legend on the right 
displays the cluster number and corresponding cluster marker.

p<0.001. [Table/Fig-9,10] depict the K-means cluster analysis of 
the high-carbohydrate and high fat test beverage treatment based 
on the fractal coefficient parameter α and on the α1, α2 ratio.



Lauren Taffe et al., Cluster Analysis for Differentiation of Obesity-related Cardiovascular Risk	 www.jcdr.net

Journal of Clinical and Diagnostic Research. 2016 Aug, Vol-10(8): CC01-CC0644

periods of metabolizing 900 Cal high-carbohydrate and high-fat 
test beverages using FFT measures of HRV [5]. The main finding 
of this subsequent study is that scaling exponents were able 
to differentiate between normal and overweight study subjects. 
There were several differences, which provided advantages in 
using DFA and k-means cluster analyses as presented in the 
present study. Our previous studies analyzed peak and nadir HRV 
measures during a 3-h period of metabolizing isocaloric high-
carbohydrate and high-fat test beverages after overnight fasting 
[5,13]. In the present study, DFA permitted analysis of the HRV 
measurements across the 3-h period using scaling exponents in 
varying time windows during the digestion and metabolism of the 
test beverages. Positive correlations between premeasured BMI 
and the fractal coefficients α, α1 and α2 [8,14-17] were found. 
Optimal clustering of data cells exhibited three centroids showing 
dependency of the scaling coefficients α, α1 and α2 on BMI < 29, 
BMI 30-39 and BMI ≥ 40 kg/m-2. These findings suggest that the 
trajectories of changes in HRV during 3-h periods after an isocaloric 
test beverage challenge likely resulted from less HRV; i.e., smaller 
increase in sympathetic activity, for individuals with ≥30 kg/m-2 
compared to those < 29 kg/m-2. Through further investigation, the 
link between the scaling exponents and pre-measured parameters 
deemed applicable in this analysis. The study participants were 
neither prehypertensive nor hypertensive, but, through the course 
of metabolic stress and increased sympathetic activity, an increase 
in blood pressure was observed. 

The blood pressure of each participant was measured once 
every hour during the course of the treatment. Because the blood 
pressure and ECG measurements were not measured on the same 
time scale, only aggregate averaged hourly data were compared 
to the scaling exponents. Although a limiting factor, the initial goal 
to observe the collective changes in blood pressure during the 
digestion of the test beverages by clusters with statistically similar 
intracluster values can be performed with scientific confidence. 
When the average hourly systolic blood pressure per cluster group 
was calculated, an increase in systolic blood pressure positively 
correlated with an increase in BMI. The three aforementioned 
clusters were associated with significantly different systolic blood 
pressures. This finding is consistent with the expectation that SBP, 
a measure of blood force during ventricular contraction, should 
be influenced more by sympathetic cardiac activity than DBP, 
attributable to increased stroke work [18]. With the exclusion of 
BMI as a parameter, the SBP values showed positive correlation to 
increasing BMI. Furthermore, SBP showed greater correlation with 
BMI in the high-fat treatment compared to the high-carbohydrate 
treatment. This difference might be related to the ten-fold greater 
sodium content of the high-fat test beverage which could have 
produced vasoconstriction and increased arterial resistance, 
similar to what has been reported for ingestion of sodium-rich 
carbonated natural mineral water [19]. This correlation between 
the hypercaloric drinks and SBP imply that their metabolism 
was able to induce prehypertensive/hypertensive characteristics 
among all BMI groups but had a greater effect among those with 
BMI ≥ 30 kg/m-2. 

A previous study on the effects of sugar sweetened beverages has 
suggested that those who consume these types of beverages on a 
daily basis were more likely to have high blood pressure [20]. What 
these studies did not do that our study has done was to stratify the 
effects in time windows of peak digestion and metabolism. Another 
strength in our study is our subjects were not pre-hypertensive nor 
hypertensive before or after the high caloric intake. This differs 
from the previous studies because their measurements were not 
taken during the digestion and metabolism but rather as a daily 
monitored blood pressure reading inferring that the adolescents 
were prehypertensive or hypertensive. 

Cluster 
Number 

Number 
in Group

α α1/α2 SBP BMI

1 3 0.75 ±0.28 1.33±0.02 N/A 24.46 ±1.30 

2 10 0.78 ±0.06 0.88 ±0.08 120.67±10.21 25.93 ±8.07aabc

3 11 1.06 ±0.03 0.67 ±0.05 121.80±5.89a 35.00 ±6.86aaddeffggg

4 12 0.96 ±0.02 0.81 ±0.02 132.80±8.41a 32.14± 6.74bhjjkk

5 11 0.98 ±0.07 0.69 ±0.04 125.22±8.17 28.19±6.87dd

6 1 1.09 1.34 126.0 28.20 

7 6 1.15±0.04 0.86 ±0.03 132.25±15.22 33.87 ±8.81cmno

8 13 1.03 ± 0.02 0.89 ±0.51 117.20±17.88 25.82 ±7.21ehjjkkm

9 18 0.92 ±0.02 0.93 ±0.04 123.67±8.78 24.51 ±4.60ffn

10 10 0.94 ±0.05 1.10 ±0.05 123.13±16.34 24.58 ± 2.36gggo

[Table/Fig-7]: K-means cluster analysis of the high-carbohydrate test beverage 
treatment. Fractal coefficients α and α1/α2 ratios between clusters are significantly 
different at p<0.05. The same single-, double- and triple-lettered superscripts 
indicate cluster systolic blood pressure (SBP) and body mass index (BMI) values 
associated with each cluster that are significantly different at p≤0.05, p≤0.01, and 
p≤0.001, respectively.

Cluster 
Number 

Number 
in Group

α1/α2 α1/α2 SBP BMI

1 11 1.06 ±0.03 1.1±0.05 116.0±7.84abbcde 22.54 ± 
4.06aabcccdeeff

2 17 0.91 ± 0.04 1.07 ±0.06 125.09±9.45a 23.72 ± 5.12gghhjkk

3 8 1.15 ±0.03 0.82±0.10 127.33±20.43 32.55 ±7.15aaggmnn

4 11 0.91±0.03 0.84 ± 0.05 122.0±9.59 27.12±5.56bm

5 20 1.04 ±0.03 0.90±0.05 131.88±12.68bb 30.88±7.86ccchhoo

6 6 0.85 ±0.05 1.30±0.80 128.33±4.93c 25.16±2.20dnnoop

7 11 0.79 ±0.05 0.89±0.09 129.13±13.71d 27.94 ±6.19eej

8 13 0.99 ±0.51 0.68 ±0.04 125.4±7.09e 31.65 ± 9.4ffkkp

[Table/Fig-8]: K-means cluster analysis of the high-fat test beverage treatment. 
Fractal coefficients α and α1/α2 ratio between clusters are significantly different at 
p<0.05. The same single-, double- and triple-lettered superscripts indicate cluster 
systolic blood pressure (SBP) and body mass index (BMI) values associated with each 
cluster that are significantly different at p≤0.05, p≤0.01, and p≤0.001, respectively. 
Significant differences for both SBP and BMI were found between clusters 1 and 5, 
1 and 6, 1 and 7 and 1 and 8.

[Table/Fig-9]: K-means cluster analysis of the high-carbohydrate test beverage 
treatment based on the fractal coefficient parameter α and on the α1, α2 ratio. The 
legend on the right displays the cluster number and corresponding cluster marker. 
No significant differences for both systolic blood pressure and body mass index were 
found between any of the clusters.

[Table/Fig-10]: K-means cluster analysis of the high-fat test beverage treatment 
based on the fractal coefficient parameter and on the α1, α2 ratio. The legend on 
the right displays the cluster number and corresponding cluster marker. Significant 
differences for both systolic blood pressure and for body mass index were found 
between clusters 1 and 5, 1 and 6, 1 and 7 and 1 and 8.

DISCUSSION 
Previous studies from our laboratory have been unable to 
differentiate between normal and overweight 18-20year-old 
African-American males after overnight fasting [4] or during 3h 
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Although these measurements indicated the absence of 
cardiovascular disease, which was purposeful in our study design, 
the trajectories of the data pooled across the trials of the two test 
beverage provocations exhibited directional changes similar to 
those reported for aging and for the development of cardiovascular 
disease [17,21-23]. Similar trajectories were observed when the 
high-carbohydrate trials were compared to the high-fat trials and 
when the individuals with BMI < 29 kg/m2 were compared to 
overweight individuals with BMI ≥ to 30 kg/m2. An obvious limitation 
of this study is that these analyses were unable to differentiate 
individuals with BMI < 25 kg/m2, an internationally accepted cutoff 
for overweight [24]. The reason for this may be our limited sample 
size of 13 subjects, thereby suggesting the need for expansion of 
this study to a larger, wider population. 

After validating the hypothesis that DFA with cluster analysis of 
HRV fractal exponents could differentiate normotensive overweight 
individuals by BMI and SBP, we tested the proposition that 
significant overlap between the intercluster differences for SBP and 
those for BMI occurred in a unique category of the study subjects. 
To test this proposition, we performed cluster analyses of the high-
carbohydrate and high-fat treatments, performed independently 
on separate days. We found that although there was no overlap 
of the intercluster differences for SBP and BMI associated with 
the high-carbohydrate treatment, there was significant overlap 
associated with the high-fat treatment. These findings support 
the hypothesis that this unique category of subjects, exhibiting 
trajectories of fractal exponents related to increased sympathetic 
activity induced by ingesting and metabolizing high-fat test 
beverages are made up of individuals at highest risk for developing 
hypertension in the near future. 

LIMITATION 
Our prior studies on similar groups of subjects [5,13] have 
shown that postprandial heart rate, energy expenditure and LF/
HF increase but these variables were not able to differentiate 
overweight from normal weight subjects. In the present study, 
we were able to differentiate the overweight from normal weight 
subjects. A limitation of this study is that we did use validated 
standards to quantify the risk for prehypertension that is often 
associated with metabolic syndrome in African-American males. 
Instead, we relied on BMI and SBP as indicators of the risk. 

Hence, we could not determine the benefit of complex measuring 
of dynamical systems-related (nonlinear fractal) HRV over BMI and 
SBP. Metabolic data (lipid, cholesterol and glucose metabolism) 
would have provided important additional insight in this respect. 
Studies are in progress to carefully quantify the risk for metabolic 
syndrome to test whether our approach to measuring postprandial 
HRV parameters, performing DFA and cluster analyses would 
differentiate obese and/or prehypertensive subjects with high and 
low risk for metabolic syndrome. This study was also limited by 
the small number of subjects and the results must, therefore, be 
considered as a preliminary report describing a novel physiological 
assessment methodology, pending recruitment of a larger number 
of subjects. 

CONCLUSION
In summary, in evaluating the electrocardiogram interbeat intervals 
of healthy 18-20 years old using Peng’s fractal, dynamical 
systems-related scaling exponents, we were able to demonstrate 
increased sympathetic modulation of our study group during 
ingestion and metabolism of isocaloric high-carbohydrate and 
high-fat test beverages. Furthermore, in using k-means cluster 
in conjunction with DFA data, we were able to see emergent 
correlation within the groups to BMI and SBP. In additional studies 
which precluded BMI, we also observed cluster formation with 
dependencies on BMI and SBP. We observed that large BMI 

was positively correlated with high SBP during the digestion and 
metabolism of the test beverages. Scaling exponent combined 
with k-means cluster analyses appear to be capable of unmasking 
the dependency of premeasured parameters on measures of 
sympathetic influences on heart rate modulations associated with 
metabolic provocation of the autonomic nervous system. These 
findings suggest the need for future studies to determine whether 
ranging analysis for stratifying risk factors in various age and health 
related communities helps identify otherwise healthy overweight or 
obese individuals at highest risk for developing hypertension and 
metabolic syndrome in the future.  
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